ERL and Parameter Recommendations (updated from mellitz_3ck_adhoc_01a_030420) for Clause 162, 163 and Annex 120F, and 120G

Richard Mellitz, Samtec

March 2020, IEEE 802.3ck Telephonic Interims

Putting ERL, Return Loss, and Reflections into Perspective

Much of this is like finding faces in the clouds when all we care about is it raining or not.

Agenda

ERL comments

- i.e. the purpose is to resolve comments
- □ COM Tracking ERL
- □ ERL parameters recommendations
- □ Clause 162 COM only shows correlation to II and not ISI
 - Recommendation: The best tact here it to set the ERL limit close to the lowest ERL for channels near 3 dB COM
- □ Annex 120F an 120G
 - Recommendation based on Clause 163

Comments and References

Clause	comment	type
162.9.3	10003	Tx Host
162.9.3.4	10009	Tx Host
162.9.4	10009	Rx Host
162.9.4.5	10011	Rx Host
162.11.3	10013	CA
162.11.3	10012	CA
163.9.1.1	10020	Tx Chip
163.9.1.1	10021	Tx Chip
163.9.2.1	10022	Rx Chip
163.10.2	10024	Channel

How Well Does COM Track ERL?

- COM tracks ERL when channel reflections are near the device transmitter or receiver.
 - ERL and COM vs. added delay track fit shapes
 - The N_{bx} parameter is related of the equalizer (DFE) reach
 - See back up for details
- N_{bx} is not tied to DFE reach for computed ERL when the test point in not near TPO or TP5
 - See back up for details

Parameter Proposal

O value for $β_x$ O.618 value for $ρ_x$

See mellitz_3ck_adhoc_01a_030420 for more details

Adopt N is based on electrical length from Mike Li

Clause/Annex	type	Ν	
162.9.3.4	Tx Host	800	
162.9.4.5	Rx Host	800	
162.11.3	CA	7000	
163.9.1.1	Tx Chip	200	
163.9.2.1	Rx Chip	200	
163.10.2	Channel	3500	
120F.3.1.1	Tx Chip	200	
120F.3.2.1	Rx Chip	200	
120F.4.3	Channel	2000	
120G.3.1.3	Host/Module	800	

N_{bx} recommendations

Clause/Annex	type	N _{bx}
162.9.3.4	Tx Host	0
162.9.4.5	Rx Host	0
162.11.3	CA	0
163.9.1.1	Tx Chip	TBD
163.9.2.1	Rx Chip	TBD
163.10.2	Channel	TBD
120F.3.1.1	Tx Chip	TBD
120F.3.2.1	Rx Chip	TBD
120F.4.3	Channel	TBD
120G.3.1.3	Host/Module	0

$N_{\rm bx}$ suggestions to use for consistency when reporting ERL when TBD's have not been resolved

Clause/Annex	type	N _{bx}
162.9.3.4	Tx Host	0
162.9.4.5	Rx Host	0
162.11.3	CA	0
163.9.1.1	Tx Chip	35
163.9.2.1	Rx Chip	35
163.10.2	Channel	35
120F.3.1.1	Tx Chip	12
120F.3.2.1	Rx Chip	12
120F.4.3	Channel	12
120G.3.1.3	Host/Module	0

ERL/N_{bx} ~= 0.066 to 0.1 dB/N_{bx}

ERL minimum recommendations

		ERL min (dB) at	ERL min (dB)at
Clause/Annex	type	TP0a	TPO
162.9.3.4	Tx Host	TBD	TBD
162.9.4.5	Rx Host	TBD	TBD
162.11.3	CA	NA	TBD
163.9.1.1	Tx Chip	TBD	TBD
163.9.2.1	Rx Chip	TBD	TBD
163.10.2	Channel	NA	TBD
120F.3.1.1	Tx Chip	TBD	TBD
120F.3.2.1	Rx Chip	TBD	TBD
120F.4.3	Channel	TBD	TBD
120G.3.1.3	Host/Module	TBD	TBD

Summary

- $\hfill\square$ Lock down β_{x} an ρ_{x} for all clauses and annexes
- Adopt N for all clauses and annexes because electrical channel lengths are known
- \Box Use N_{bx}= 0 for Clause 162, Annex 120G
- Keep N_{bx} = TBD in the next draft for Clause 163 and Annexes 120F and 120G
- □ Adopt ERL_{min} as TBD for all clause and channels
 - Confirmation and proposals from vested parties required

THANK YOU !

Backup Data

Background

- □ Reviewing all the ERL presentations over the past year suggest determining simultaneously optimizing ERL parameters (β_x , ρ_x , N_{bx}) and ERL limits in the context of performance(COM or Δ COM) for all possible channels and packages is a daunting problem
- Data also suggest single settings for ERL parameters are useful (mellitz_3ck_adhoc_01a_030420)
 - ERL depends on independent parameters, β_{x} and ρ_{x}
 - ERL strongly tracks ρ_{x} which is only weakly scaled by β_{x}
 - Treat ρ_{x} and β_{x} as just computational parameters and lock down for all ports
 - This simplification moves the project along
 - Then set the ERL limit accordingly

For Clause 163 and Annex 120G DFE reach tracks COM and ERL through N_{bx}

Does ERL track ΔCOM and COM

- □ The answer is "It depends" ⊗
- □ For Tx/Rx KR and C2C packages answer is yes
- For channels where reflections are near the end of the channel the answer is yes
- For all others the tracking is looser and dominated by end terminations
- □ The best tact here it to set the ERL limit close to the lowest ERL for channels near 3 dB COM

ERL and COM tracking for bga(tp0) to bga(tp5)

Package and Channel COM added delay experiments

Similar to ERL experiment done in mellitz_3cd_01b_1117

Would changing the amount of reflection alter the trends of the results?

□ Change the capacitor to 400 ff from 200 ff

Shorten the total length to 450 mm from 600 mm to keep around 3 dB of COM

IEEE 802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force

Similar trends regardless of reflection magnitude

2(

Package added delay experiment.

Added Package delay vs COM and ERL of package for selections of $\,N_{\rm bx}$

A more pragmatic method uses R²

- □ If we use all the COM values vs delay for R71 and R68. That gives me 2 vectors, COM(R#, UI (0:1:90))
- □ For each case (either R71 or R68) determine ERL for each delay case for a give N_{bx}, where N_{bx}= 0:2:60 (31 cases)
- □ For each case that results in 31 vectors of ERL vs delay ERL(R#, UI(0:1:90), N_{bx})
- □ R² is correlation for each case between COM(R#, UI (0:1:90)) and delay ERL(R#, UI(0:1:90), N_{bx})
- \Box Then we plot R^2 vs N_{bx} for each case.
- \Box Computation for ERL used Annex 93A.5 with β_{x} =0, ρ_{x} -0.618, and N = 2000

A more pragmatic approach place N_{bx} at 35

CL 163 Rx/Rx ERL estimate for package reference package variations

ERL and Pmax/Vf of reference package at TPOa

Figure 93–5—Transmitter test fixture and test points

Distribution suggest Tx/Rx ERL limits at tpOa

Selecting channel with reflection near TPO for experimenting

PTDR of Clause 163 Channels with Reflections near TPO and with COM \sim 3 dB

PTDR the rest of the story: All the channel have reflections

Kappa (κ) may be used to determine impact of reflections (from healey_3ck_01a_0120)

· The transfer function from the transmitter input to the receiver output is the following

Delta COM

κ = 0 (no tp0 reflection) and κ =1 seen at the receiver at tp5

Start with: $ERL_{min} = 10 dB$

All channel with lower than 9.75 dB ERL Fail COM

Cable Assembly Data

CA data COM and ERL (Nbx=42)

COM vs IL and ISI ... correlations

COM correlated to Cable IL

COM not correlated to ISI

Based on All posted CA channel ERL min looks like 8.5 dB with N_{bx} =0

DAC Cable Delay experiment

Similar experiment what was done for packages and KR channels
A similar experiment was done durn .3ck ERL developent

Look back at the ERL experiment in mellitz_3cd_01b_1117

Would changing the amount of reflection alter the trends of the results?

□ Change the capacitor to 400 ff from 200 ff

Shorten the total length to 450 mm from 600 mm to keep around 3 dB of COM

IEEE 802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force

Similar trends regardless of reflection magnitude

Hypothesis: Based on the above there should be little affect from the added delay aside from the expected resonances

2(

As expect there is little impact from the delay and no obvious impact from the DFE reach

Supports the assertion that N_{bx} should be 0 for CR Since the ERL is measured a far distance from the devices

ERL minimum values to be reviewed by vested parties

		ERL min (dB) at	ERL min (dB)at
Clause/Annex	type	TP0a	TPO
162.9.3.4	Tx Host	TBD	TBD
162.9.4.5	Rx Host	TBD	TBD
162.11.3	CA	NA	8.5
163.9.1.1	Tx Chip	15	13
163.9.2.1	Rx Chip	15	13
163.10.2	Channel	NA	9.75
120F.3.1.1	Tx Chip	13.5	11.5
120F.3.2.1	Rx Chip	13.5	11.5
120F.4.3	Channel	TBD	TBD
120G.3.1.3	Host/Module	TBD	TBD